

A method for understanding conflicts between cyclists and other road users at urban intersections

OCTOBER 2016 Final REPORT

Document Title:	A method for understanding conflicts between cyclists and other road users at urban intersections				
Prepared for:	Prepared for the AA Research Foundation				
Prepared by:	Mackie Research & Consulting Ltd and OPUS Research	Signed	Mullahe	Date	13/10/2016

Revision No.	Amendments	Completed by	Date
1	Final report following minor comments from client	Hamish Mackie and Jared Thomas	28/10/2016
2	Minor change to Final report to add Financial year costings	Hamish Mackie	8/11/2016

Mackie Research and Consulting Limited (MaRC) is an organisation providing high quality independent human systems research and consultancy services. MaRC has expertise across a range of areas including transport human factors (road safety and sustainable transport), recreation, equipment design and evaluation and other areas where interactions between people and their environment or the things that people use are important.

Authorship: This document was written by Hamish Mackie, Jared Thomas, Lily Hirsch, and Anna Davison. For further information, please contact Hamish using the contact details below

Disclaimer: MaRC Limited, its contributors and employees shall not be liable for any loss or damage sustained by any person relying on this report, whatever the cause of such loss or damage.

Mackie Research and Consulting Ltd 642 Great South Road Ellerslie Auckland

Ph 09 579 2328 MB 021 067 0337 www.mackieresearch.co.nz

Contents

1.		Back	ground and Purpose4								
2.		Scop	эе	4							
3.		Brie	f summary of the literature	4							
	3.1	1.	Conclusion from the literature	5							
4.		Hybi	rid approach methodology	6							
	4.1	1.	Overview	6							
	4.2	2.	Better value approach	6							
	4.3	3.	Phase 1: Data collection	7							
	4.4	4.	Phase 2: Cyclist identification	8							
	4.5	5.	Phase 3: Conflict identification	8							
	4.6	6.	Phase 4: Behavioural coding	8							
5.		An a	approach to identify intersection sites	9							
6.		Sugg	gested method	10							
	6.1	1.	Pilot Study (1 intersection, 2 days of data collection, data processing)	10							
	6.2	2	Main Study: 3 additional intersections	11							
	6.3	3	Findings	11							
R	efer	rence	es	11							
G	loss	sary/	/Definitions	13							
A	ppe	endic	ces	14							

1. Background and Purpose

A key component of the government's investment in cycling is ensuring that cycling safety can be improved and not worsened by increased participation. Accordingly, the Cycling Safety Panel, among its recommendations, seek to ensure that intersections are designed so that they are safe for cyclists. Key to this is understanding the factors that are associated with cyclist casualties at intersections. Thus, an approach needs to be developed to understand near misses and other behaviours that are likely to be associated with poor actual and perceived safety for cyclists at intersections. The comfort of all road users is also important and so a method to better understand cyclist near misses needs to consider both motorist and cyclist comfort.

The AA Research Foundation, in partnership with the Transport Agency, is embarking on feasibility research to develop a method for this. Further to the scoping document presented by the AA Research Foundation and the initial scope of work offered by Mackie Research and OPUS, a discussion with key stakeholders has been useful in helping to refine the scope of the feasibility work. This document presents the proposed method for assessing cyclist near misses and behaviours that are likely to indicate motorist and cyclist risk or discomfort. The focus will be on commuter cycling at urban intersections.

2. Scope

The overall goal of this pilot project is to provide sufficient information to determine whether a full cycling intersection conflict study would be feasible and the likely costs of doing so. The follow stages set out the deliverables for this project.

- 1) A very brief review of literature
- 2) Development of an indicative draft framework based on literature and previous work of the researchers
- 3) An approach to identify intersection sites
- 4) A detailed method for the next stages of work
- 5) A review of benefits and limitations of this approach (to inform a robust decision on whether to proceed)

3. Brief summary of the literature

Academic and other literature that describes methods for analysing safety aspects of road user interactions (i.e. traffic conflicts, near misses) was reviewed, with a particular focus on studies involving intersections. Interactions of interest included motorist-motorist, motorist-bicycle, and motorist-pedestrian conflicts. Within the studies reviewed, three main methodological approaches were identified.

Manual methods: Where human observers code video footage manually, or directly observe and code up their observations in the absence of video footage.

Automated computer vision methods: Where video footage is automatically processed by software designed to identify conflict events.

Hybrid methods: Where there is a combination of automated and manual methods (or semiautomated methods).

Manual approaches include those where video recorders capture the data, as well as those where human observers capture the data. Both rely on people to manually code and analyse the video footage, including recording any physical measurement parameters and target behaviours. The advantage of the former technique lies in the ability to re-appraise the video footage multiple times, and by different observers, in order to gain a thorough appreciation of the wider, potentially complex contextual components around the interactions. Pre, during and post event factors can be analysed, including the contribution of driver / rider behaviours, infrastructure, road side and road rule factors. While this allows the creation of a full and detailed picture of the circumstances around the event, the main disadvantage to this approach is the considerable amount of time, and therefore cost required to review the video footage, code up the measurement parameters and then analyse them. There is also the possibility that human error may result in some events being missed, or inaccurately coded, particularly where there is no video footage to review.

Automated approaches rule out the human error component, by identifying all events within the video footage that meet a pre-determined set of criteria. The data processing time is fast and efficient, since it targets only the footage that contains certain measurement parameters or criteria. The parameters and criteria used during the automated data processing allow critical events to be shortlisted and levels of conflict and / or near-miss prioritised according to the spatial and temporal criteria imposed. However, where the automated approaches benefit from efficiencies of time and hence cost, they are disadvantaged by their inability to identify and analyse the wider contextual information and contributing factors mentioned above and how these contribute to the event. Difficulties with automated processing can also arise where there are multiple road users interacting simultaneously, with different behaviours and trajectories adding layers of complexity that an automated system will find hard to differentiate and attribute accurately.

Hybrid approaches aim to maximise the benefits of the both the manual and automated approaches, while minimising their limiting factors. Thus an automated approach can be used to detect, shortlist and prioritise critical events / interactions based on a set of pre-defined temporal and spatial parameters, or set of criteria, following which the human observer can manually review the target footage, and examine the wider context, and associated contributing factors, before, during and after the event.

3.1. Conclusion from the literature

Overall, we recommend a hybrid approach, which is complementary in that the shortcomings of the automatic method are overcome by the manual method and vice versa. Automated systems are cost efficient if capturing a lot of data or doing longitudinal studies, and can have up to an 85% correct conflict detection rate, and allow for easier monitoring of speed and distance metrics. Then for interpreting the severity and context of the behaviour leading up to an event, a Manual Evaluation by a human observer overcomes the typical interpretation errors where the automated systems still have reliability issues, and allows subtle measurement of behaviours to determine variation in severity assessments. See Appendix 1 for more detail on the advantages, disadvantages and metrics used with studies examined.

This approach is also world-leading, in that there are very few studies that combine disciplines (human factors and information technology) to take a hybrid approach, so this also fills a large research gap.

4. Hybrid approach methodology

4.1. Overview

Monitoring road users' movements by camera is non-intrusive and does not alter their behaviour. The literature, along with our previous experience suggest that there are two feasible options for cycle conflict analyses at intersections – a completely manual approach or a hybrid approach. For the manual approach all aspects of the analysis are carried out manually. For the hybrid approach, cyclist identification and possibly conflict identification may be carried out automatically using 'machine vision' technology. Realistically, at this stage, to fully code road user behaviours, a manual approach is needed for at least some aspects of the analysis.

The hybrid approach will be a 4 phase process: firstly, video recordings of the intersection will be collected; secondly applying computer vision software processing to the video footage to automatically identify cyclists; thirdly potentially categorise cyclist – motorist interactions; and lastly, engaging a researcher to examine the wider contextual, behavioural and situational factors impacting on the event.

4.2. Better value approach

We believe that the use of a hybrid approach is the most cost effective solution to having the best of both worlds in the video-recorded data collection arena. It will allow us to collect a large amount of targeted data, over a longer period of time, for more statistically robust results. The automated identification of critical events involves considerably less time and labour cost than where a person is tasked with having to identify all instances when a bicycle is present within the hours of video footage.

The human component is optimised through the automated short-listing process, such that the researchers time is spent as efficiently as possible eliciting the rich contextual information surrounding the identified events that the automated process will fail to appreciate. In short, the automated data processing will provide a list of critical events which the researcher will then manually review to gain an appreciation of the wider context and layers of complexity created by the contributing infrastructure, behavioural and situational factors.

The table below shows the possible approaches to each stage and the following figure shows the likely differences in cost for manual vs a hybrid approach.

	Phase 1 Data collection	Phase 2 Cyclist identification	Phase 3 Conflict identification	Phase 4 Behavioural coding
Manual approach	Intersection	Manual	Manual	Manual
Hybrid	rid video camera placement	Computer	Manual	Manual
approaches		Computer	Computer	Manual

Analysis volume

4.3. Phase 1: Data collection

- Four intersections (two in Auckland and two in Wellington) will be selected for data collection. Initially, one intersection will be filmed as a trial site. This will help to establish a data analysis framework that can then be effectively applied to multiple intersections;
- Data will be collected using a high-quality video camera (30 frames per second) overlooking the selected intersections. The camera may be attached to a light pole, sign, or be placed in an office window. Ideally, the camera will be in a location where it will not be obscured by high passing vehicles, cannot be interfered with, and where its stability is not affected (i.e. by wind). It will be equipped with a timing device and appropriate storage capacity to enable data capture during peak traffic periods over a 3-day period;
- In terms of perspective, the automatic detection software works best from an aerial (or birds-eye) view (typically from a building, so may work best in urban setting), which requires greater height and has the benefit that it could capture a larger part of the intersection from one camera (and so capture more interactions and also provide geolocation of conflicts). The trade-off here is the higher up, the less detailed view of for manual coding of behaviour;
- One camera will be positioned at each intersection. It will not be necessary to use multiple cameras due to the simple nature of the selected intersections;
- Video will be taken during morning and afternoon peak periods (7:30-9:30am and 3:30-6:30pm) in an effort to capture the times that cyclists most frequently use the intersections. Earlier and later times will be avoided due to the camera's poor sensitivity in low light conditions;
- The video will be captured over a period of 2-3 non-rain week days. Wet weather and night conditions may eventually be of interest, but not for this initial study. Importantly, we can potentially collect more footage on more days if we use the hybrid method. So another advantage of the hybrid method is it can potentially increase our data set for a lower cost;
- The computer vision software can run off standard video footage from an aerial view, and then is calibrated using real-world features to ensure the distance measurements are accurate.

4.4. Phase 2: Cyclist identification

Once video footage is collected, cyclists can be identified either manually or automatically. Manual identification simply involves an analyst playing video footage (either in real time or fast forward), visually identifying a cyclist and then initiating the coding process. For automatic cyclist identification, software detects a cyclist and makes an entry in a database, noting the time, or possibly even recording a relevant segment of video. One example of technology that could be useful is the FLIR System which is currently used to activate electronic cycle signs using a thermal imaging camera. This system currently dumps activations into a spreadsheet and an associated camera (such as Rasberry PI) could be used in conjunction with it to only capture video with cyclists in it. A drawback of this technology is that motorcyclists are typically also captured with this system. However, given that motorcyclists also suffer from some crash types that cyclists typically experience (e.g. looked but didn't see by motorist from side road), there may be an opportunity to analyse both cyclist and motorcyclist conflicts using a single system.

4.5. Phase 3: Conflict identification

Following the process of identifying cyclists, instances where some sort of 'conflict' exists then need to be determined. Various levels of conflict are explained further in Phase 4, but a system needs to capture lower-level conflicts (Avoiding or negotiated behaviour) as well as more serious conflicts or near misses. Lower level avoiding behaviour is important to capture as it helps to understand not only safety risk but also occasions where cyclists (and motorists) may feel discomfort.

A manual approach to conflict identification would simply involve an analyst assessing any interactions with other road users and categorising the level of conflict accordingly (as proposed in the next section). Taking an automated approach, measures such as Time to Collision (TTC) or Post Encroachment Time (PET) may be used. For this a 'machine vision' system would be needed to automatically identify and track users in the field of view. Typically, a PET of less than 1.5 seconds between a cyclist and another road user would be used to identify any potential conflicts.

4.6. Phase 4: Behavioural coding

From the initial automated (or manual) sorting of the video data to identify important events, a human will then be used to code the characteristics of the interactions. The coding for this phase provides sufficient information to understand the nature of the interaction so that solutions can be designed and effectively evaluated. The human coder would be more adept at identifying subtle and nuanced behaviour than a computer program, so it is accepted that this last phase will require manual coding.

This approach would initially utilise two independent analysts to code cyclist behaviour. Once an acceptable inter-rater reliability score has been established, then one analyst could code the main dataset, with periodic auditing by a second coder.

For this phase, we have started with our Future Streets coding framework, as significant effort has already gone into developing it, including determining an acceptable inter-rater reliability. However, it required modification to meet the specific purpose of analysing cycle intersection conflicts. Discussion between Mackie and Opus identified areas where modifications were needed.

A summary of the coding framework for phase 4 is presented in the diagram below:

A more detailed description of the NZTA movement codes can be found in Appendix 2, and a more detailed description of the coding options for each item can be found in Appendix 3.

5. An approach to identify intersection sites

Initially, a convenience approach to selecting intersections of interest is suggested to test and refine a video analysis method. Consultation with RCA staff will be used to determine sites that are of mutual interest. Criteria for intersection inclusion may include intersections that:

- are relatively 'conventional' and therefore will allow the method to be scaled up around the country to similar intersections if successful. We are not including roundabouts at this stage.
- have higher volumes of cyclists, so that sufficient data can be collected from them
- are known hotspots for cyclist conflicts and/or crashes
- Include cyclist movements that are typically problematic
- have obvious locations where video cameras could feasibly be located (or have existing video cameras which provide a useful field of view)

Beyond pilot work, the following process might be used to select intersections for analysis:

6. Suggested method

6.1. Pilot Study (1 intersection, 2 days of data collection, data processing)

Once selected, there will be a preliminary site investigation to examine infrastructure and other features of the site, observe road user behaviours through the site, identify any potential risks that could impact on data capture, record any health and safety considerations for installing the equipment, and identify the best structure / location to install the camera that offers the best overall perspective of the intersection. Permission to locate the camera in this chosen location will then be sought.

Data will be collected over 2-3 days (taking into account traffic flow through the site, battery life, memory capacity).

Camera footage will be calibrated for the specific site, to match real world features that enable accurate calculations of distance and therefore speed data to be made. Following calibration, a selection of the footage will be processed automatically using baseline identification rules and the identical footage will then be corroborated manually by a human coder. The algorithms used during the automated processing will then be further calibrated / moderated to minimise misses and false detections in the data.

All cyclist-motorist interactions captured will then be time-stamped and binned if they occur within 1.5s of each other in terms of PET. This short-listed 'binned' group will then be prioritised based on 0.5s increments (i.e. from collisions at 0s, 0.5s, 1.0s, 1.5s), where the smaller PET in seconds reflects the greater severity of the event. Automatic processing of these interactions will also include calculations of the speed of the cyclist and motorist (including braking), location and trajectory of the vehicles. The short-listed events will then be processed in greater depth and within the wider context by a human coder, starting with the most serious conflicts first. The human coder will take a systems approach to the coding, that includes a thorough appraisal of the range of contributory factors, (infrastructure, driver/rider and environmental) impacting before, during and after the event, and in terms of conflict severity, as outlined in the framework shown in earlier in Section 4.5.

The results will be written up in a short report highlighting summary statistics and recommended refinements for the full study.

6.2 Main Study: 3 additional intersections

After a hold point and review, we will proceed onto the main study. A refined methodology based on the steps outlined in the pilot above will be applied to examine the final intersections. The findings will be analysed, including comparative statistical analyses between intersections and examining novel and common factors relating to cyclist-motorist conflict.

6.3 Findings

There are three main components to the findings of this innovative research. First, the findings will provide new lessons and knowledge about computer vision using a hybrid methodology. Second, the intersection data captured will reveal cyclist/motorist interaction factors that may be generalisable to a wider set of intersections to inform engineering and education practice and recommendations. Third, and most importantly, the study will provide unique cycle/motorist interaction data on four important intersections where informed interventions could be put in place (working with the local road authority). The method could then be employed to test success immediately and cost-effectively. So this provides the opportunity to move beyond research and into reporting real-world safety benefits.

References

Colville-Andersen, M., P. Madruga, R. Kujanpää and K. Maddox (2013). The Bicycle Choreography of an Urban Intersection, Copenhagenize Design Co.

Elvebakk, B. and T. Steiro (2009). "First principles, second hand: Perceptions and interpretations of vision zero in Norway." Safety Science 47(7): 958-966.

Goode, N., Salmon, P., Lenne, M., Walker, G., Grant, E., Scott-Parker, B. (2014) Using on-road study data to explore the sequence of behaviours and factors involved in cyclists near collisions with other road users. Proceddings of the 1014 Australasion Road Safety Research, Policing and Education Conference.

Hunter, W., R. Srinivasan and C. Martell (2012). "Evaluation of Rectangular Rapid Flash Beacon at Pinellas Trail Crossing in Saint Petersburg, Florida." Transportation Research Record: Journal of the Transportation Research Board 2314: 7-13.

Ismail K., Sayed, T., Saunier, N. (2009) Automated Pedestrian Safety Analysis Using Video Data in the Context of Scramble Phase Intersections. Paper Presented at the 2009 Annual Conference of the Transportation Association of Canada.

Ismail, K., Sayed, T., Saunier, N., Lim, C. (2009) Automated Analysis of Pedestrian-Vehicle Conflicts Using Video Data. Journal of the Transportation Research Board, No. 2140, 44-54

Johnson, M., J. L. Charlton, J. Oxley and S. V. Newstead (2010). "Naturalistic cycling study: identifying risk factors for on-road commuter cyclists." Annals of advances in automotive medicine 54: 275-283.

Johnson, M. and D. Chong (2015). Faster than the speed of bikes. Cycling Futures. J. Bonham and M. Johnson. Adelaide, Australia, University of Adelaide Press.

Kassim, A. (2014). Innovative Techniques for Analyzing Cyclist Behaviour and Predicting Cyclist Safety. PhD, Carleton University.

Kraay, J. H., A. R. A. Van der Horst and S. Oppe (1986). Handleiding conflictobservatietechniek DOCTOR (Manual Conflict observation Technique DOCTOR). Leidschendam, The Netherlands, Institue for Road Safey Research SWOV. Report R.85-53.

Laureshyn, A., H. Ardo, A. Svensson and T. Jonsson (2009). "Application of automated video analysis for behavioural studies: concept and experience." IET Intelligent Transport Systems 3(3): 345-357.

Ling, H. and J. Wu (2004). "A study on cyclist behavior at signalized intersections." IEEE Transactions on intelligent transportation systems 5(4): 293-299.

Mackie, H. W., S. G. Charlton, P. H. Baas and P. C. Villasenor (2013). "Road user behaviour changes following a self-explaining roads intervention." Accident Analysis & Prevention 50(0): 742-750.

Phillips, R. O., T. Bjørnskau, R. Hagman and F. Sagberg (2011). "Reduction in car–bicycle conflict at a road–cycle path intersection: evidence of road user adaptation?" Transportation research part F: Traffic Psychology and Behaviour 14(2): 87-95.

Sayed, T., Zaki, M.H., Autey, J. (2013) Automated Safety Diagnosisi of Vehicle-Bicycle Interactions Using Computer Vision Analysis. Safety Science, 59 (2013) 163-172

Saunier, N., Sayed, T and Ismail, K (2010) Large Scale Automated Analysis of Vehcile Interactions and Collisions Transportation Research Record: Journal of the Transportation Research Board. No. 2147, p42-50

Van der Horst, A., de Goede, M., de Hair-Buijsen, S., Methorst, R. (2014) Traffic Conflicts on Bicycle Paths: A Systematic Observation of behaviour from video. Accident Analysis and Prevention. (62) 358-368

Wu, C., L. Yao and K. Zhang (2012). "The red-light running behavior of electric bike riders and cyclists at urban intersections in China: an observational study." Accident Analysis & Prevention 49: 186-192.

Glossary/Definitions

Traffic conflict: Defined as "an observable situation in which two or more road users approach each other in space and time to such an extent that there is a risk of collision if their movements remain unchanged" (Amundsen and Hyden 1977, cited by Van de Horst et al 2014)

Near miss: Defined as "the time between the moment that the first road-user leaves the path of the 2nd road-user, and the 2nd road-user reaches the path of the 1st" (Allen et al 1977, cited by Van de Horst et al 2014)

PET: Pose-Encroachment Time is a common conflict measure that examines the difference in time between a first road user leaving a common spatial location and a second road user arriving at that same location (Ismail et al., 2009).

TTC: Time-to-Collision is a common conflict measure that examines the time before two road users (or objects) collide if they were to continue on the same trajectory with no change in speed or direction (Sayed et al., 2013).

Conflict monitoring success metrics

Collective Risk = Events/hour

Individual Risk = Conflict rate/interaction

Severity = Typically examine a combination of TTC or PET (but do not typically attempt to combine this with speed, which would be a nice addition)

Appendices

Appendix 1

	Collection method	Author/ title	Method	Method - Comments	Manual Analysis	Manual Analysis - Comments
		Application of automated video analysis for behavioural studies: concept and experience (Laureshyn, Ardo et al. 2009)	Manual observations at the same time as video observations Attached cameras to balconies on apartment buildings. Issues with permission to use balcony, being able to contact building owner, source of power nearby etc.	Ensure accuracy. Might gather more behavioural information (if the cyclist shouted, facial expressions etc.)		
Manual study	Two observers positioned at each location (intersection)	Manual Conflict observation Technique DOCTOR (Kraay, Van der Horst et al. 1986)	Two observers located near intersection.	Careful to position observers so they are not noticeable by road users and do not disrupt naturalistic behaviour. Not having video means the researchers are unable to review an event.	Developed a coding system to analyse the behaviour of all road users and determine the seriousness of conflicts.	The coding system can be used regardless of if the method of collection is by observation, or video. Although the system can effectively code movement, it does not provide a qualitative understanding behind movement-based behaviour

		Paper-based observation form	Having two observers means you are less likely to miss an event. Can clarify the details of an event. Physical observers capture 'in the moment' data. Researcher may have a better 'feel' for the event than if it was on video.		
Video cameras positioned on poles overlooking an intersection. One camera per intersection.	Future Streets	Video taken two days a week (Wednesday and Saturday) from 6am- 6:30-7pm for four days.		Two analysts used to code the video.	More accurate, avoids coding bias
		Traffic tube counters	Tubes: limited lifespan of 2 weeks. Can count all vehicles,	Zones were created on the video analysis screen	The analyst could then record how the road user moved through the intersection, and what manoeuvre they had made.
			including cyclists	Developed an analysis framework Type: adult, child, elderly, accomp helmet (yes/no) cyclist movement (1-4-5-6) cycling location: on-road, footpat Cyclist behaviour : safe & complia awareness of traffic, cycling as a v mixture of road and footpath, op demonstrate formal head checks	c for all road users. Here, we outline cyclist analysis: panied, group (2 or more adults), group of children h, on cycling facility int. Mostly follows road rules and demonstrates vehicle either mid-block or whilst turning. Informal : portunistic crossing or gap selection. Cyclist may not or signalling, but demonstrates some awareness of

Video cameras were positioned on commuting cyclists' helmets. Their regular commute over a 4-week period was recorded. A survey of participants was also included	Naturalistic cycling study: identifying risk factors for on- road commuter cyclists (Johnson, Charlton et al. 2010)	Video recordings captured cyclists' perspective of the road and traffic behaviours including head checks, reactions and manoeuvres.	Helmet-mounted camera: Only from the point-of-view of cyclists. Can't get the bigger picture of the intersection. Can't see what is happening behind them. Oregon Scientific ATC3K Action Camera. Footage recorded at 640 x 480 VGA	other road users. Risky/reckless : Riding heedless of traffic or pedestrians, demonstrating risky manoeuvres (e.g. diagonal crossing at intersections regardless of traffic, darting out). Coding system to determine severity of encounter: Adapted from (Kraay, Van der Horst et al. 1986, Johnson, Charlton et al. 2010, Hunter, Srinivasan et al. 2012) Standard encounter : A traffic situation in which two road users approach each other in time and space and may influence each other's behaviour. For the majority of encounters, a controlled adaption of course or speed will be sufficient to realise a normal settlement of encounter. This includes giving way or 'courtesy' give-way behaviour, where user does not legally have to give-way. Behaviour is controlled. Avoidance : a noticeable change in speed or direction by either the pedestrian or interacting user to avoid the other (e.g. minor braking by the vehicle). Less severe avoiding behaviour compared to a near-miss/conflict. Near-miss : Rapid or evasive manoeuvring (Johnson et al., 2010) to avoid each other, evident by a sudden change in speed or direction by the pedestrian or interacting user to avoid the other (or both users) (e.g. major braking by the vehicle or swerving). Data analysis was conducted in four stages: an initial footage review; identification of events, classification of event characteristics and; statistical analysis. The classification of events was adapted from 100-car study (Neale et al. Blacksburg, Virginia: Virginia Tech Transportation Institute; 2002. The 100 Car Naturalistic Driving Study, Phase 1 - Experimental Design.) "Three event severities were identified: collision, near-collision and incident. A <i>collision</i> involved contact between the cyclist and another road user with kinetic energy transference. A <i>near-collision</i> required rapid, evasive manoeuvring from the cyclist and/or the driver to avoid a collision, e.g. sudden braking or swerving. An <i>incident</i> required some collision avoidance, but was less sudden than the near-collision ev
also included		manoeuvres.	Footage recorded at 640 x 480 VGA resolution, 30 frames p/s	space when overtaking cyclists."
		Each participant recorded 12 hours of their	Footage when participants rode off- road including bike paths and footpaths	

		commuter cycling trip over a 4-week period.	and; footage recorded during low light hours as the camera had poor light sensitivity was excluded		
		Participant inclusion criteria: over 18 years, regularly cycle commuted to and from work, travelled the majority of trip (70%) on- road and able to film 12 hours of footage over a 4-week period.	The study was conducted during warmer months from October to December 2009, commencing with the start of daylight savings (summer time).		
		Participants completed a	Provided weekly updates. Completed		
		survey about their	an exit interview about their study experience,		
		driving/cycling experiences	cycling safety and general topics including helmets, headphones and registration.		
Video camera	Reduction in car-	28.25 hours of		Two analysts coded the video	Two people rated these situations independent of
overlooking a	road-cycle conjnict at a	were made on		uala	was disagreement reclassification occurred by
crossing.	intersection:	weekdavs			discussing the situation between the two people
Ŭ	evidence of road	between 7-			rating them.
	user adaptation	9am and 3-		Zones on the video were coded	The analyst could then record how the road user

	(Phillips, Bjørnskau	5pm		i.e. A, B, G, H	moved through the intersection, and what
	et al. 2011)				manoeuvre they had made.
				"Yielding event: The cyclist	It was noted who yielded first. Uneventful cases
				and/or driver yields in a	involving cyclists were also recorded
				controlled manner in order to	
				avoid a collision with the other	
				party. Conflict event: The	
				cyclists and/or driver stops or	
				brakes suddenly in order to	
				avoid a collision with the other	
				party" p.90	
Purpose of	The red-light	Observational	Tripod next to the	Coding restricted to e-bikes and	Coded for: age group, gender, traffic light status,
study to	running behavior	study with two	roadway. The other	cyclists entering an intersection	type of bike (electric, pedal), crossing behaviour
, investigate the	of electric bike	synchronised	, faced the other	on a red light. Only those riders	(law-obeying, risk-taking, opportunistic), situational
rate. associated	riders and cyclists	video cameras	direction.	travelling through the	factors (cross traffic volume, group size)
factors. and	at urban	at three four-	Weekdays during	intersection.	
behaviour	intersections in	armed	davlight hours.	1h of video was coded by two	
characteristics	China: an	signalised	Avoided rain and	independent research	
of two-wheeler	observational	intersections	extreme	assistants to avoid notential	
red light	study (Wu, Yao et	in Rejijng	temperatures	coding hiss	
running	al 2012)	in beijing.			
Video of an	The Bicycle	The empirical	Recorded 16.631	When determining whether	Conformists - Bicycle users who ride by the book
urban	Choreography of	data is	bicycle users and	behaviour was "good" or "bad"	Momentumists - Bicycle users who interpreted the
intersection in	an Urban	collected from	27 644 motorists	we used the current Danish	current rules creatively whilst following their Desire
Conenhagen for	Intersection	7 am to 7 nm	nassing through the	traffic laws as a rough	Lines Our rule of thumh was that if something is
12 hours from	(Colville-Andersen	on 11 Anril	intersection from	guideline However as the	legal in The Netherlands or in another cycling nation
an office	Madruga et al	2012 1	07:00 to 19:00	traffic laws are car-centric in	or city then we regarded it as Momentumism Right
window	2012)	consists of	07.00 10 19.00.	nature and do not priortice	turns on red for bicycle usors for example are new
window.	2013)	biovelo usor		nature and do not priortise	logal in Daris and Prussels. In addition, bioycles are
		and motorist		divided the laws into two	not evoluted from nodestrian crossings in many
				catagorias and created three	cities around the world like Japan Spain etc
		counts,		categories and created timee	Deal/iste Disusle users who flouted what we think
				categories for bicycle users.	Recklists - Bicycle users who houled what We think
		Desire Lines			to be rather sensible traffic rules; running a red or
		of the bicycles			yenow light, riging on a sidewark or ignoring the
		and the			bicycle infrastructure.

		number of legal and illegal acts - according to the Danish traffic laws - as well as general behavioural observations.		We classify the bicycle users' path range from basic movements tha through the intersection, to the r turns. They use these lines to opt efficiency as transport mode. Mo choreography of other users, as c	hs according to the Desire Lines they follow. The Lines t follow the planners' intentions for movements nore complex methods such as U-Turns and multiple imize their ride and make the best use of the bike's st traffic users orient themselves according to the opposed to the existing traffic rules.
Cyclists wore helmet- mounted video cameras. Aim of the study was to assess the speed of cyclists in different situations	Faster than the speed of bikes (Johnson and Chong 2015)	Helmet- mounted cameras	Only from the point- of-view of cyclists. Can't get the bigger picture of the intersection. Can't see what is happening behind them Good-quality cameras used Oregon Scientific ATC9K camera mounted on helmet to measure daily commute (in the ACT).		
'think aloud' and video	Using on-road study data to explore the sequence of behaviours and factors involved in cyclists' near collisions with other road users (Goode, Salmon et al. 2014)	On-road trial of cyclists on a pre-defined urban route. Cyclists provided concurrent 'think aloud' verbal protocols, while being video recorded by a following		Near misses were identified using manual observation of the video footage and classified according to; a) type of conflict (single, multiple vehicles) b) sequence of behaviours (awareness, pre-event manoeuvre, precipitating factor, evasive manoeuvre) c) contributory factors (road layout, road furniture, driver behaviour, cyclist behaviour	Advantages: Verbal protocols allowed researchers to extract cyclists decision-making and thought processes in real-time. Cyclist verbal protocols could be used to compare with and validate analysis of video footage / classification of interactions captured. They could also be used as a complementary measure to the fixed camera approach, where a small number of riders could ride through the target intersections providing verbal protocols about their

		receptoher on	nodestrian hebayiour read	oversions interacting with the intersection and
				experience interacting with the intersection and
		a bicycle.	rules)	perceptions of safety / discomfort in relation to
				particular infrastructure, motorist or other features.
			Stanton and Salmons 2009	
			taxonomy of driver error causal	Disadvantages:
			factors was adapted for cycling.	Labour intensive reviewing video footage and
				associated cyclist verbal protocols.
			Guo et al's 2010 model of	
			vehicle crashes/near misses	Possible mismatch between cyclist verbal
			was applied to cyclist	identification of critical event / near-miss and
			crash/near miss events.	researcher classification of these using the video
				footage.
				-
				Verbal protocols based on cyclists personal
				perspective, and could therefore introduce variation
				related to age, experience, confidence etc.
Video were	Traffic conflicts on	Used 2 or 3	Analysis was undertaken using	Advantages:
captured over a	bicycle paths: A	CCD (charge-	the DOCTOR (Dutch Objective	Overcomes some of the limitations of automated
week (location?)	systematic	coupled	Conflict Technique for	methods, such as detection error due to lighting and
	observation of	device) video	Operation and Research)	the presence of shadows, occlusion by other vehicles
	hehaviour from	cameras and a	conflict observation method	in heavy traffic and requirements on camera angles
	video	close un	connectobservation method.	for specific feature detection (e.g. hicycle wheels)
	luan der Horst da	camera	A critical situation was	to specific reature detection (e.g. bicycle writers).
	Coede et al 2014	recording for	identified when the space	Manual coding allows for repeated viewing of the
	00eue et ul. 2014)	24 hours a day	available for manageuring was	video footage to specifically score different aspects
		24 HOUIS a Udy	available for manoeuvring Was	of the conflict
		over a 7-uay	normal avaidant reaction	
		period.	Conflict coverity based or	This follows the cofe system engaged through the
			connect severity based on	This follows the safe system approach through the
			probability of collision and	analysis of events, benaviours and intrastructure
			likely outcome of a collision.	reatures that are evident before during and after the
				conflict.
				It allows for the analysis of contextual information
				about the amount of space available vs amount of
				space needed – which might provide an indicator for

					infrastructure change.
					This safe system method of analysis is similar to the AustRoads risk assessment calculator, in that they both utilise the likelihood of an event occurring and the likely injury severity following a crash to assess the impact of an actual conflict.
					Disadvantages: High cost as the task is labour intensive, both in identifying a conflict event (especially if cycling is less frequent), and in coding a conflict event (which requires repetition of the same conflict event several times to code it, often going through it frame-by- frame).
					Identification of conflict events relies on a focussed human observer watching footage that is typically running at higher than real-time speed (between events). Thus introducing the possibility for some conflict/ near miss situations to be missed.
					Particularly difficult to accurately capture microscopic changes in road user position and speed. Also, this takes the longest to code.
					Some of the metrics used would be difficult to repeat by other researchers due to the subjective nature of the assessment criteria used for the conflict events.
Video footage	A study on cyclist	Positioned two	May miss subtle	Manual video analysis:	
of an	behavior at	synchronised	movement, don't	Within the data-reduction process	s, the speeds of traffic entities were determined by
intersection,	signalized	cameras to	necessarily understand	noting the time required to traver	se a known distance (usually about 15–20 m), which
used two	intersectons	view the entire	decision-making	is defined by a set of fixed objects	(i.e. the width of roadways or the distance between
cameras to film	(Ling and Wu 2004)	intersection	process	stop lines).	

	it. Aim to understand cyclist behaviour and movements at signalised intersections		Used two cameras Pedestrian overpass over an intersection	Limited battery life Monitoring road users' movements by camera is non-intrusive and does not alter their behaviour.	The time required to traverse the during the traverse. The time can 0.04 s. The speed was computed for each entity. In this method, th km/h. The duration of a gap is me beginning and end of the gap. The conflict point; at this moment, th ends when the closing gap vehicle accepted lag in this way; the only in this case.	e section was obtained by noting the number of frames be calculated by multiplying the number of frames by by dividing the reference distance by the elapse time he error of speed data is estimated less than 0.15 easured from the number of pictures between the e gap begins when the bicycle front wheel reaches the e opening gap vehicle arrived at point A and the gap e reaches point A. Likewise, we can measure an difference is that point A locates at the conflict point
	Video was collected of roads and intersections pre- and post a change in the design of the road	Road user behaviour changes following a self- explaining roads intervention (Mackie, Charlton et al. 2013)	Video was collected over nine separate days, at nine different locations, both before and after SER construction	Cameras mounted on tripods	Video data used to count pedestr For each road user that appeared assigned to descriptors that were by road type (local, collector or b (mid-block or intersection) and th were chosen for their relevance t sufficient information to allow su they also needed to be easily sub developed, they were tested to d information to be useful and also Two analysts independently code subjective interpretation were th road user behaviour code, prior t	ians and cyclists. I within the video frame, numerical codes were developed. Firstly, the data were broadly categorised oth in the case of threshold intersections), location nen by road user (e.g. car, pedestrian etc.). Descriptors o the SER modifications. While they needed to give btle changes in road user behaviour to be detected, jectively categorised. After the descriptor codes were etermine whether they provided sufficient whether they were agreeable between analysts. ed an initial sample of data. Any discrepancies in en addressed to clarify the requirements for each o the main data coding
	Collection method	Author/ title	Method	Method- Comments	Hybrid analysis	Hybrid analysis - comments
Hybrid study	Analysis of contra-flow cycling on a one-way street using video	Application of automated video analysis for behavioural studies: concept and experience (Laureshyn, Ardo et al. 2009)	Attached cameras to balconies on apartment buildings.	Issues with permission to use balcony, being able to contact building owner, source of power nearby etc	Developing automated video analysis system. Uses a point- tracker. Measures trajectories (foreground – background segmentation), and speed (shape analysis of interest points). Manual observations of the video were also conducted	The video analysis system that was used was most effective at picking-up movement going in the counter direction. In general, the video system picked up fewer cyclists than the human observers did, but there were cases when the system found cyclists that the human observer had not observed.

Video of a	Automated	Similar analysis	Used automated computer	Advantages: Automated systems can identify,
'scramble-	pedestrian safety	techniques are	vision techniques to detect and	shortlist and prioritise important events. About 7000
phase'	analysis using	presented in	analyse the severity of	vehicle turning events and 2100 pedestrian crossing
intersection in	video data in the	(Ismail, Sayed	pedestrian-vehicle conflicts at	events were identified during 20 hours of footage.
California. Aim:	context of	et al. 2009)	an intersection, using	
to demonstrate	scramble phase	"Automated	positional, spatial and temporal	The authors recommend PET over TTC as the most
pedestrian-	intersections	analysis of	data parameters.	reliable approach for detection of important events.
vehicle conflicts	(Ismail, Sayed et al.	pedestrian-	While the system was	However, PET has limitations in accurately capturing
in the context of	2009)	vehicle	automated, this was one of the	conflict severity.
a scramble-		conflicts using	only studies to explicitly	
phase		video data"	highlight the benefit of using	Once identified, critical conflict events can then be
intersection			the automated system to	analysed in more depth by a human observer, to
			identify important events, for	provide thorough contextual analysis of events,
			the purpose of relaying these	including severity confirmation.
			events to a human observer for	
			further examination (as	Disadvantages : Still requires accurate identification
			opposed to validation). Hence,	of conflict events taking into account error around
			we have labelled this as a	lighting effects, limited video angle, and occlusion.
			hybrid system, as it is one of	
			the only studies to recommend	
			this approach.	
Comparison of	Cross-comparison		Compared two semi-automated	Advantages: The semi-automated methods use
methods	of three surrogate		methods using 1) the Swedish	supplementary tools to assist manual coding via
	safety methods to		traffic conflict technique	semi-automated video processing (using T-Analyst:
	diagnose cyclist		(Swedish TCT), 2) the Dutch	http://www.tft.lth.se/en/research/video-
	safety problems at		conflict technique (DOCTOR).	analysis/co-operation/software/).
	intersections in		Object identification and Time-	This allows a manual setup of a 3D model that can
	Norway		to-Collision.	calculate elements that are difficult to manually
	(Laureshyn, Goede		This was also compared to a	code, such as speed, road user position, and Time-
	et al. 2016)		Canadian probabilistic	to-Collision.
			surrogate measures of safety	Some evidence of external validity with crash data.
			(PSMS), which used open	The type and location of conflicts were similar to
			source software developed	that reported in the crashes (although the crash
			from the "Traffic Intelligence"	numbers were small, n = 7 crashes).
			project.	High correlation between the two semi-automated

Crithered	Company of Marcoli			methods indicating high reliability. The Swedish TCT develops a conflict severity ranking by combining time-to-accident (the time at which an evasive action is taken) and the conflicting speed (the speed of travel at the time of the evasive maneuver) Disadvantages : Used experts to initially identify the "conflict" events, meaning it is still a labour intensive approach initially (but faster than manual coding once set up). Far fewer conflict events than automated methods (although arguably fewer false detections).
camera	Camera calibration for urban traffic		approach for grid-based camera	Advantages: A grid-based overlay could be used as another semi-
calibration	scenes: practical		calibration that is used prior to	automated approach, adding another tool to help
	issues and a robust		the use of automated computer	with the more difficult metrics related to manual
	approach (Ismail Saved et al		vision techniques.	coding.
	(isinali, suycu ct ul. 2010)		This helps overcome error due	Often manual coders will make evenly spaced
			to the visual angle of the	temporary markings in real-world scenes to provide
			camera, by placing an even grid	distance cues when determining speed, distance and
			to real-world geometric road	version of this.
			user positions.	Disadvantages:
				This method would still require manual coding that
				would be resource intensive

Video of	Innovative	Positioned	Static high-definition	Video analysis technique to	Measuring wheel was used on the road to mark out
intersection to	Techniques for	camera on 12 th	commercial grade	measure cyclist speed.	areas. This helped get true information on the
understand	Analyzing Cyclist	floor of a	video camera (1920 ×		computer screen to determine true lengths of
movement of	Behaviour and	building to	1080 pixels at 30		segments which appeared on the video.
cyclists.	Predicting Cyclist	view the entire	frames/second). Good-		
Water drip on	Safety	intersection	quality camera ensures		
cyclists' front	(Kassim 2014)		high-quality video		
wheel to better	. ,		footage. Monitoring		
see travelled			road users'		
path.			movements by camera		
Note, this is a			is non-intrusive and		
PhD, so only			does not alter their		
some methods			behaviour.		
have been			May miss subtle		
commented on			movement, don't		
here.			necessarily understand		
			decision-making		
			process		
			Limited battery life		
		Cyclist water	Not naturalistic	Tracking algorithm to identify	Saves time looking through hours of video.
		trail	It rains a lot in	moving objects	Differentiate between different road users and the
			Auckland, might not		environment
			show up.		Cost
			To show the path that		Expertise to develop it. Is something like this already
			the bike took. Dripper		available?
			system installed onto		
			front wheel. Useful for		
			mapping desire lines		
Collection	Author/ title	Method	Method comments	Automated analysis	Automated analysis - comments
method					

		A 1			Automated as faturalized as a faturalized	Descharged a suplicit unbight any flight has to superform the
Automated study	Videoed an intersection. Traffic conflicts were automatically identified by computer analysis	Automated safety diagnosis of vehicle-bicycle interactions using computer vision analysis (Sayed, Zaki et al. 2013)	Vide of an intersection using multiple, synchronised cameras. Careful about deciding the placement and angles. One intersection camera was used, with the camera angle altered to pick up three different views or locations on three different days (for 8 hours each).	Get the whole view of the intersection, can better understand and interpret the movement and behaviours as you get the 'whole picture'	Automated safety diagnosis approach for evaluating vehicle– bicycle conflict situations using video analysis. Countermeasures were also recommended based on the analysis (but no post- implementation trial was run to evaluate this). Automatic detection of; traffic conflicts and ranking of severity (using TTC), different vehicle types, vehicle road rule violations	Produced a cyclist-vehicle conflict heat map for the intersection. Good way of showing 'hot spots', the dangerous points for cyclists at intersections. Advantages: Object detection allows automatic coding of variables like vehicle type, and space-based object detection can automatically code frequency and location of risk maneuvers (like failure to yield at intersections), providing additional data at relatively low cost. Tracking accuracy of movements was over 85%, and classification of objects was above 90%. Conflict and severity rates could be automatically evaluated, with 28% of cyclist-motorist interactions with a TTC of 3s or less, and 14% with a TTC of 1s or less. Including a breakdown by location, and visual hot spot spatial techniques, to look at conflict density by exact location (e.g. conflicts/m2). Disadvantages: Overall false detection rates are very high. Some conflicts are missed through automation. Noise in the image and errors such as classification errors meant that about 13% of conflicts were missed (when compared with those classified manually by a human observer). Accurate detection of cyclists can mean that the camera position needs a good viewing angle on the wheel of the bicycle (as this is the most consistent feature detection component, especially if distinguishing a bicycle from a motorcycle or pedestrian).

Used eight cameras to film an intersection	A comparison between PARAMICS and VISSIM in estimating automated field- measured traffic conflicts at signalized intersections (Essa and Sayed 2016)		This study used automated video- based computer vision techniques to capture vehicle trajectory data to predict conflict using vehicle trajectory data. Microsimulation models (PARAMICS and VISSIM) were evaluated to predict conflict at a signalised intersection, validated against manual observer data. The Kanade–Lucas–Tomasi feature tracker algorithm was used to track movement and audit the data. The focus was vehicle-vehicle interactions, specifically looking at rear end conflict.	 Advantages: The length of the observation period can be extended, as the resource cost of analysing the footage is low (once the data is collected). The most severe events can then be identified and prioritised for examination. High reliability of conflict prediction. A two-phase calibration of the data meant a very strong relationship with manual expert observations of conflict for these models. Compared with manual observation the PARAMICS model provided a 0.60-0.75 correlation at lower Time-to-Collision (TTC) thresholds (between 1.0s and 1.5s respectively). Lower TTC thresholds are more relevant to safety, as they represent closer conflicts or near misses. The benefit of 8 cameras for each intersection is that the closer the camera (or the higher the resolution of the footage) the more accurate the measurements are regarding speed, position, and likelihood of conflict Disadvantages: The 8 camera approach is a higher resource approach compared with some automated methods. Also, the practicalities of setup may be difficult at some intersections (i.e. locating positions for the 8 cameras and syncing the cameras). This study only examined rear end collisions using only trajectory data, so other proxy measures of conflict, or other relevant behaviours were not captured.
				This study only examined rear end collisions using only trajectory data, so other proxy measures of conflict, or other relevant behaviours were not captured.
				Still required manual coding by a human observer to determine validity, and even after calibration both PARAMICS and VISIM overestimate the number of conflicts (i.e. false detections).

Used pole-	Are signalized	This research examined multiple	Automated video-based method for analysis of post-encroachment time (PET) at intersections.
mounted GoPro cameras (with a resolution of 15	intersections with cycle tracks safer? A case–control	intersections using a case-control study approach to determine the efficacy of cycle tracks (defined as cycles lanes that	Advantages : Automated conflict prediction allows automated processing of larger data sets, in this case more than 90 hours of data from 23 intersections.
frames/s).	study based on automated surrogate safety analysis using video data (Zangenehpour, Strauss et al. 2016)	are physically separated by infrastructure like concrete medians or bollards) in improving safety when they cross over with intersections.	This is beneficial in assigning relative risk between intersections or monitoring change in risk over time. In this case it has indicated that intersections with cycle tracks vs no cycle tracks have about half the "dangerous" interaction rate (which was calculated based on exposure to PET of less than 1.5s). The classification accuracy of conflicts (compared with manual) was high at 88%. Disadvantages : A before-after approach with more data on fewer intersections would have greater control.

	TYPE	Α	В	С	D	E	F	G	С
A	OVERTAKING AND LANE CHANGE	PULING OUT OR DWWEING LAKE TO RIGHT	HEAD ON	CUTTING IN OR CHANNELIANE TO LEFT	LOST CONTROL (OVER TAKING VEHCLE)	SIDE 7.040		WEAVENED IN HEAVY TRAFFIC	OTHER
В	HEAD ON	ON STRAIGHT				LOST CONTROL	LOST CONTROL		OTHER
С	LOST CONTROL OR OFF ROAD (STRAIGHT ROADS)	- 10000- OUT OF CONTROL	DIST RONDOWN	OFF READWAY TO RIGHT					OTHER
D	CORNERING	LOST CONTROL LOST CONTROL	LOST CONTROL TURNING LEPT						OTHER
E	COLLISION WITH OBSTRUCTION	PARKED VEHICLE		NON VEHICULAR OBSTRUCTIONS ONCLUDING ANIMALS)					OTHER
F	REAR END			→→.j [‡]	→→→ queixe				OTHER
G	TURNING VERSUS SAME DIRECTION	REAR OF LEFT TURNING VEHICLE				OVERTAKING	TWO TURNING		отнея
Н	CROSSING (NO TURNS)	100HT ANOLE (20'TO 110')							OTHER
J	CROSSING (VEHICLE TURNING)	HIGHT THEN	OFFORING RUDHT TURNS	THO TURNING					UTHER
к	MERGING		RIGHT TURN IN	TWO TURNING					отнея
L	RIGHT TURN AGAINST	STOPPED BONTONS TO TUNN							OTHER
м	MANOEUVRING				DRDJEWNO'	ENTERING OR LEPACING FROM OPPOSITE GIDE		REARSING	OTHER
N	PEDESTRIANS CROSSING ROAD	LEPT SIDE	ADDHIT GIDE			LEFT TURN RIGHT SZDE	RIGHT TURN LEFT SIDE		отней
Ρ	PEDESTRIANS OTHER								OTHER
Q	MISCELLANEOUS	₽ >©/ FEL well	SHO/ FELL FROM	10000	_→			s.	OTHER

New Zealand Government

Draft coding protocol

Code site and date.

Code time for each cyclist for when they appear in the frame.

Code the cyclist for each time they cross the road under the same site reference (specific to a site and specific to a user).

If a cyclist crosses the road twice at different roads, code the cyclist twice under same site reference and the same time on the row below (highlighted in yellow).

For the cyclists it is very important to code everything e.g. if they signal or have, or do not have lights on when it is dark, this should be coded in the comments box to the left in the spreadsheet.

If a cyclist is riding mid-block and a car passes them – but there is no visible change in direction or speed by either road user – this is a no interaction.

Cyclist type:

- Adult
- Child (definition: Wearing a school uniform, obviously under 18 years of age)
- Elderly (definition: obviously elderly)
- Accompanied
- Group (2 or more adults on bikes)
- Group of children

Helmet:

- Yes (wearing a helmet)
- No (not wearing a helmet)
- Unsure

Cycling location:

- On road
- On footpath
- Mixture (mixture between riding on footpath and road). If a cyclist only rides on the road to cross but otherwise rides only on the footpath, it should be classified as *on footpath*. If during riding they swap between footpath and road and vice versa, it should be classified as mixture.
- On cycling facility

Cyclist movement:

• Between zones ascribed to the intersection.

Cyclist behaviour:

- Safe and compliant (definition: generally following road rules and demonstrating awareness of traffic (cycling as a vehicle either mid-block or whilst turning). Cycling on the road and showing awareness of other road users, head checks, may be signalling.
- Informal: Riding on the footpath, mixture of road and footpath, opportunistic crossing or gap selection. Cyclist may not demonstrate formal head checks or signalling, but demonstrates some awareness of other road users.
- **Risky or reckless**: Riding heedless of traffic or pedestrians, demonstrating risky manoeuvres (e.g. diagonal crossing at intersections regardless of traffic, darting out)

Interaction type:

- **No interaction** Definition: No cars present or no evidence of an intersecting movement, or road users adapting their behaviour in response to the other.
- **Standard encounter** (definition: a traffic situation in which two road users approach each other in time and space and may influence each other's behaviour. For the majority of encounters, a controlled adaption of course or speed will be sufficient to realise a normal settlement of encounter)
- Close encounter (definition: no obvious action taken by either road user. Automated option: PET, TTC)
- Avoidance (definition: a noticeable change in speed or direction by either the cyclist or interacting user to avoid the other (e.g. minor braking by the vehicle). Less severe avoiding behaviour compared to near-miss/conflict)
- **Near-miss** (definition: Rapid or evasive manoeuvring to avoid each other, evident by a sudden change in speed or direction by the pedestrian or interacting user to avoid the other (or both users) (e.g. major braking by the vehicle or swerving).
- Collision (definition: physical contact between users)

Interacting user:

- Motor vehicle
- Pedestrian
- Motorbike

Interacting user movement:

• Between zones ascribed to that intersection

Standard encounter cyclist action:

- No action maintains course
- Passes parked vehicle
- Gives-way
- Negotiates traffic/RU (road user)

Standard encounter pedestrian action:

- No action maintains course
- Gives-way
- Negotiates cyclist

Standard encounter vehicle (or motorbike) action:

- No action maintains course
- Gives-way (courtesy)
- Vehicle non-compliant

Avoidance cyclist action:

- No action maintains course
- Passes parked vehicle
- Brakes or slows
- Accelerates
- Changes path/swerves
- Priority

Avoidance pedestrian action:

- No action maintains on course
- Stops or slows runs
- Changes path or swerves

Avoidance vehicle (or motorbike action):

- No action maintains course
- Vehicle non-compliant
- Brakes
- Overtakes cyclist (<1m)
- Overtakes cyclist (>1m)
- Accelerates
- Swerves